Recurrence of Quadratic Differentials for Harmonic Measure
نویسندگان
چکیده
We consider random walks on the mapping class group that have finite first moment with respect to the word metric, whose support generates a non-elementary subgroup and contains a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum of quadratic differentials. We show that a Teichmüller geodesic typical with respect to the harmonic measure for such random walks, is recurrent to the thick part of the principal stratum. As a consequence, the vertical foliation of such a random Teichmüller geodesic has no saddle connections.
منابع مشابه
A Uniform Poincaré Estimate for Quadratic Differentials on Closed Surfaces
We revisit the classical Poincaré inequality on closed surfaces, and prove its natural analogue for quadratic differentials. In stark contrast to the classical case, our inequality does not degenerate when we work on hyperbolic surfaces that themselves are degenerating, and this fact turns out to be essential for applications to the Teichmüller harmonic map flow.
متن کاملHeegner Divisors, L-functions and Harmonic Weak Maass Forms
Recent works, mostly related to Ramanujan’s mock theta functions, make use of the fact that harmonic weak Maass forms can be combinatorial generating functions. Generalizing works of Waldspurger, Kohnen and Zagier, we prove that such forms also serve as “generating functions” for central values and derivatives of quadratic twists of weight 2 modular L-functions. To obtain these results, we cons...
متن کاملEnergy of Harmonic Maps and Gardiner’s Formula
It is shown that the usual first variational formula for the energy of a harmonic map (or equivariant harmonic map) with respect to the conformal structure on a two dimensional domain extends to case of nonpositively curved metric space targets. As applications, we recover Gardiner’s formula for the variation of the Hubbard-Masur differential and a proof of the existence and uniqueness of quadr...
متن کاملQuantitative Recurrence and Large Deviations for Teichmuller Geodesic Flow
We prove quantitative recurrence and large deviations results for the Teichmuller geodesic flow on the moduli space Qg of holomorphic unit-area quadratic differentials on a compact genus g ≥ 2 surface.
متن کاملHarmonic Maps to R-trees and Morgan-shalen Compactification
(1) In Section 2, we define the notion of harmonic maps and quadratic differentials. Then we give a harmonic map proof of Teichmuller’s theorem by Wolf. (See [2], [9]) (2) In Section 3, we explain a compactification of Teichmuller spaces by Wolf using harmonic maps. (See [2], [4], [10], [11]) (3) In Section 4, we review the Morgan-Shalen compactification and the Korevaar-Schoen limit. Then we g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017